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The structure of the stationary kinetic boundary layer for the 
linear BGK equation . . I  

A J Kainz and U M Titulaer 
Institut f i r  Theoretische Physik, Johannes-Kepler-Univ~~~i~~t  Linz, A-4040 Linz, Austria 

Received 16 December 1991 

Abstract. Recently, very accurate numerical methods far solving kinetic boundary layer 
problems for linear kinetic equations have been developed. To test such methods, detailed 
information about exactly solvable models can be very helpful. To this purpose we present 
remits fcr the stationary, I D  linear BCK equation, obtained by the sixgalar eigenfunction 
method, that extend results already known i n  the literature, both in scope and in precision. 
Special attention is paid to the nature of the singularity i n  the distribution function for 
m a l l  velocities near the boundary; this singularity cannot be reproduced exactly by the 
numerical methods available. Explicit expressions are presented for the Milne problem 
and for the albedo problem with input panicles of a single velocity. We compare the results 
with those of a recently developed variant of the two-stream moment method. We find 
excellent agreement, except close to the singularity: for many quantities of interest, the 
accuracy obtainable by the novel two-stream moment method cannot be reproduced with 
comparable numerical effon by evaluation of the erad solution 

1. Introduction and survey 

The BGK equation, proposed by Bhatnagar et a/ [ 11, and independently by Welander 
[Z], is the simplest kinetic equation; the Boltzmann collision operator is replaced by 
a simple relaxation towards local equilibrium. Its linear version can be solved exactly 
for a number of cases in which the solution depends on a single space coordinate 
[3,4], i.e. the solution can be obtained by quadratures or by the solution of (singular) 
integral equations in one variable. In particular, the linear BGK equation furnished the 
earliest and simplest examples of exactly solvable kinetic boundary layer problems 

The availability of exact solutions means that the BGK equation may be used as a 
test case for approximate and numerical schemes for solving kinetic boundary layer 
problems. As such it was used in some recent papers [5,6] on methods for solving 
planar problems with several boundary conditions by variants of the moment method. 
In one of these papers [6] we developed a highly accurate two-stream moment method 
and compared its results with exact information, both for the BGK and for the Klein- 
Kramers [7-91 equation. Since much of the required information about the BGK 

equation was not available in the literature in an immediately usable form, the 
comparison needed in [6] required an extension of the known results on the BGK 

equation. Many such results were quoted without proof in [61; in the present paper 
they will be presented in a systematic way, and their derivation will be outlined. 

Our results in this paper extend known results mainly in two directions. First, we 
provide a systematic study of the analytic structure of the singularity of the stationary 
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half-space solutions at the confining wall at zero velocity. Since such a singularity 
cannot he reproduced exactly by the moment methods, which approximate the solution 
by a sequence of piecewise analytic functions, the behaviour near the singularity 
provides the most sensitive test for these approximation schemes. Second, we present 
some techniques that allow us to replace the singular integral equations that appear 
in some kinetic boundary layer problems by non-singular ones that are more amenable 
to numerical solution. Though our methods can also be applied to the Laplace transform 
of the time-dependent linear BGK equation, and to slab geometries, we shall confine 
ourselves in this paper to stationary problems in half-space geometries, but for a few 
remarks in the concluding section. 

In section 2 we give the explict form of the simple stationary linear BGK equation 
treated in this paper. In addition we present the singular eigenfunctions [ 10, 111 and 
their half-range completeness and orthogonality properties, which enable us to reduce 
the simplest boundary layer problems to quadratures. We also give some auxiliary 
formulae needed later in the paper. In section 3 we discuss the simplest boundary 
layer problems, in which the wall absorbs (or transmits) all particles impinging upon 
it. When the particle source is a t  infinity we thus obtain the Milne problem; for a 
source situated at the wall we obtain the albedo problem. We discuss in particular the 
singularity in those solutions at the wall. In addition to the albedo problems discussed 
in [6] we discuss the case of a source that emits particles with a single velocity. The 
solution thus obtained is (up to a constant) equal to the Green function for the BGK 

equation with absorbing wall for the special case that the source point lies at the wall. 
The results are compared with those of the two-stream moment method presented in [6]. 

In section 4 we discuss the case that the wall reflects some of the particles, elastically 
or inelastically. In this case, the singular eigenfunction method reduces the problem 
to a solution of a singular integral equation. We reduce this equation to a regular one 
and discuss a solution method that is sufficiently accurate to allow a comparison with 
the moment method presented in [6], though it was not possible to obtain an accuracy 
comparable to that of the two-stream moment method without excessive numerical 
effort. In the concluding section we discuss some possible extensions of our methods 
to slightly more complicated problems. Some auxiliary formulae, especially for the 
asymptotic evaluation of integrals needed to determine the nature of the singularity 
discussed in section 3, are discussed in an appendix. 

1 

2. The BGK equation and its singular eigenfunctions 

The stationary linear BGK equation for the distribution function f (u ,  x)  of velocity U 
and position x of an assembly of (monoatomic) gas molecules reads [4] 

t m  

(2.1) 
J 

u$u, x) = +(U, x ) +  +du) I-a du’f(u’, x)  

where &,(U) is the normalized ID Maxwell distribution 

It is obtained by replacing the Boltzmann collision operator by a simple relaxation 
towards total equilibrium. In (2.1) velocities are measured in units ofthe mean thermal 
velocity and lengths in terms of the mean free path. This equation has special solutions 
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of the form 

J ( u ,  x )  = e-”’”gA ( u)+d U 1. (2.3) 
By substituting (2.3) into (2.1) and integrating over U one immediately sees that 
solutions of type (2.3) carry no current. As noted by van Kampen [lo] and Case [ I l l ,  
the generalized eigenfunctions g, have the form 

where p ( A )  follows from the normalization requirement 
+m 

P du 4du)sA(u) = 1 

with P denoting the principal value, and is given by 

P(A)+&)=  I -AA & ( A / & )  

where FD( U) denotes Dawson’s integral 

FD(u)=exp[-u2] 

‘ In addition to the generalized eigenfunctions gA(u) belonging to the continuous 
spectrum, one has the normdizable eigenfunction +o(u) ,  belonging to A =m, and the 
associated function 

+ l ( u , x ) = ( x - - u ) + o ( ~ ) .  (2.8) 

The set of functions 

{4du); ~ + d u ) ;  g,(u)+,(u)with-m<A<m} (2.9) 

is orthogonal and complete on the real line -m < U <a, [4]. For boundary layer 
problems, more useful properties are the so-called half-range orthogonality and com- 
pleteness properties: in terms of the scalar productt 

( f , g ) + = P ~ o ~ d u w ( u ) J ( u ) g ( u )  (2.10a) 

C ( u )  = u + o ( u ) [ ~ 2 u 2 + p ( u ) ’ l  

( 1 , 1 ) + = 1  (1, gal+ = 0 

the half-range orthogonality can be expressed as [4, 12,131 

( g h ,  Pel+= c ( A ) Q ( A ) S ( h - w )  for A, p> 0 

and the half-range completeness relation reads 

(2.1Oc) 

(2.11) 

(2.12) 

t The expression (2 .10b)  for Q ( u )  follows from lhat given by Cercignani [4] by partial integralion a i  lhe 
tan-‘ function. 
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The relations (3.10) and (3.12) imply that the set of functions 

{ M u ) ;  g A ( u ) b 0 ( U ) ,  with O < A  <a) 

A J Kainz and U M Titulaer 

(2.13) 

is orthogonal and complete o n  the half-line O <  u < m  with respect to (2.10a). In 
particular, any function g(u) with 

can be written uniquely in the form 

(2.14) 

(2.15a) 

The representation (2.15) can be derived from (2.11) and (2.12). A useful identity for 
albedo problems is 

I ,  

(2.16) 

which is derived from (2.12) by multiplying with w ( u )  0 - I  and integrating over u>O. 
In evaluating the integrals we used the identities 

( [ t +  U]-', l), = Q ( f 1 - I  with Q(0) = 1 (2.17a) 

which follows from (3.35) of [4], and 

([ f - U]-', l), = -p(  t ) w ( t ) t - '  (2.176) 

which follows from (2.17a) and (l ,gA)+=O (see (2.11)). The identity 

(u - ' , g J+=  1 (2.18) 

follows straightforwardly from (2.17a) and (2.176), whereas ( 1 ,  g,)+=O and ( 1 ,  l ) + =  1 
lead to 

( u , g ~ ) + = - A .  (2.19a) 

The corresponding expression for the discrete eigenfunction 

(2.19b) 

is a variant of (4.8) of [4]. The quantity &OK is the Milne lcngth for the BOK equation, 
as will be shown in the next section. The identities (2.17)-(2.19) will be needed in the 
subsequent sections. Singular integrals such as that occurring in (2.156) can be reduced 
to regular ones by means of 

and 

(2.206) 
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where the latter identity follows from (2.5), (2.4) and the normalization condition for 

For future use we also note that the behaviour of the functionp(A) defined in (2.6) 

P ( A ) ~ O ( A ) = - A - ~  forA-w (2.21a) 

d d z ) .  

for small and large A follows from 

(2.216) 

For the function A/C(A), with C(A) defined in (2.10c), this implies 

A/C(A)= A*&(A) forA-w (2.22a) 

A/C(A) =--[I - fAZ(?r  -3)] + 0 ( A 4 )  for small A. (2.22b) 
1 
Ji;; 

Finally, for Q(A) we find, using the techniques described in the appendix, 

A In A 1 0.724 71 . , , 
A' In A +O(A2)  (2.23n) 

y%; 
Q ( A ) =  1 --+0.72471.. . A+-Az(ln A)'- G 47r 

whereas in the limit of large A an expansion of the logarithm in the integrand leads to 

Q(A)= A + X ; ~ ~ +  O(A-') (2.236) 

where we used the results 

Jom dt&= 1 jomdt&% xsGK= 1.437 111 685 7600.. . . (2.24) 

3. The Milne and albedo problems 

The most general solution of (2.1) that increases no faster than linearly with x is 
given by 

f ( u , x ) =  &,(U) A,+A, (x -u )+P  dA A(A)g,(u) e-"'A ] . (3.1) [ 
The associated density in position space is 

lo* (3.2) n ( x ) =  duf(u ,x)  =Ao+A,x+  dAA(A) e-"'* 
+m L 

as follows from the normalization condition (2.5); the particle current equals 
t m  

duuf(u,x)=-A, .  (3.3) 

(As noted after (2.3), the terms containing A, and A(A) carry no current.) The albedo 
solution &(U, x )  for the input distribution g ( u )  is characterized by 

Af=O f,(u, 0) = g ( u )  for u >  0 (3.4) 

and i t  follows from the half-range completeness that Ai and Ag(A) are given by (2.15b). 
Physically, this corresponds to the situation that particles are injected into the half-space 
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at the wall x = 0 with velocity distribution g( U )  and absorbed (or transmitted) upon 
return to the wall. The Milne solution fM(u, x )  is characterized by 

A J Kainz and U M Titulaer 

AY=l fM( U, 0) = 0 for U > 0. (3 .5 )  
Since f M (  U, x )  - (x - u ) & ( u )  is the albedo solution for g( U )  = U&( U), the coefficients 
in the Milne solution are found by comparing (2 .19)  and (2 .156) ,  and are given by 

AM(A)= -A[C(A)Q(A)]-'. (3 .6)  
Both the Milne and the albedo solution exhibit a jump at U = 0 for x = 0, but not for 
x > 0. To show this we consider 

S(x) 

M- BOK 
Ao - X M  

lim [f(-U, x )  - f (u,  x ) ]  
"IO 

= lim - dh[g,(-u)-g,(u)]A(A) (3 .7a)  

Since the first term in (2.4) is continuous at U = 0, only the 8-function part contributes 
and we obtain 

where we have used (2 .21b) .  We thus obtain 

S(0)  = -A(O) S(x)=Oforx>O. 

For x > 0 the value f(0, x )  is given by 

(3 .76)  

as follows from a comparison of (3 .1)  and (3 .2) ;  for xJ0 this approaches the limiting 
value off(u,  0) for negative U. The appearance of A(0) in (3 .8 )  is not too surprising: 
the nature of the singularity is determined by those components in (3 .1)  that decay 
most rapidly in space, as we also saw for the case of the Klein-Kramers equation [ 9 ] .  

In the remainder of this section we shall first discuss the Milne solution somewhat 
more fully and then add a few remarks on some albedo solutions. The condition that 
fM(u, 0) should vanish for U > 0 reads 

+ p ( u ) A M ( u ) ]  = O  for U > 0. (3 .10)  

In the limit uJ0 the last term in square brackets approaches -1, as is clear from (3 .6 )  
and (2 .21)- (2.23);  the limiting value of the principal value integral will be discussed 
more fully in the appendix. The result obtained is 

A , " + I n w d A A ~ ( A ) = n ~ ( O ) = i  (3.11) 

where we used (3 .2) .  To obtain an impression of the nature of the singularity of fM 

near U = x = 0 we consider the approach towards the singularity along the lines x = au, 
U > 0. There we have 

(3.12) for U > 0, a > 0. 
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For uL0 this aproaches 

where we used (3.11) and treated the principal value integral using the techniques 
described in the appendix. For a < 0 the last term in square brackets in (3.12) is missing 
and we obtain 

i 
lim J(-u, au) =- a>O. (3.136) 
4 0  6 

The behaviour of J(u,x) near the singularity is shown in figure 1 ,  together with the 
result of the two-stream method [6], in which the precise nature of the singularity can, 
of course, not he reproduced faithfully. For albedo solutions, a singularity similar to 
that in (3.13) appears: 

foru>O (3.141~) 
n"0) 

" I O  JT;; limf,(u,nu)=---+A"(O)e-" 

limfs(-u, au) =- n g ( o )  
"10 JT;; for u > 0. (3.146) 

" A  
dA-AM(A) = Q ( u )  

u + A r + j o  A + u  (3.15) 

which follows from (3.36) of [4] using (3.6) and (2.170); a simple corollary is 

J M ( - ~ ,  O)= $ o ( u ) Q ( ~ ) .  (3.16) 
Hence the small-u expansion forfM(-u, 0) follows immediately from (2.23a). For the 
density n'(x) the asymptotic analysis of the integral (3.2) with the special values (3.6) 
yields 

1 
(3.17~1) M n (x) = 1 --x In x +  ax+ O(x2 In2 x) JT;; 

Figure 1. ( a )  The Milne solution f ' ( u , x )  in the immediate vicinity of the singularity at 
U = x =0, for -0.01 s U b 0.Oi and O b x  b 0.02 as calculated from the exact solution. 
( b )  The same quantity as in ( a ) ,  as calculated fmm the N = 2 8  two-stream moment 
method. 
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with 
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dA A'(A)[e-"'A - 11 
X 

(3.176) 

The values for nM(x) for several x obtained from the exact expression and from the 
N = 28 two-stream approximation are given in table 1. We see that, as expected, the 
logarithmic singularity for small x in (3.17a) is not reproduced very well; however, 
the errors in n " ( x )  never exceed and they have gone down to a few parts in IO-' 
for x = 1. 

For the albedo problem, some special results for input distributions of the type 

g=,du) = u' exp[-pu2/21 (3.18) 

were given in [61. In the present paper we present some results on the monoenergetic 
input 

(3.19) g(  U )  = U,lS( U - U,)). 

From (2.15) we immediately see 

The treatment of the singularity a t  A = U,, follows from the completeness relation (2.12), 
from which we deduce 

In particular we obtain, using (2.16) and (2 .5 ) ,  

n(O)= duf(u, 0)= Q(u,,)u;'. 
t m  L 

To evaluate (3.21) we first write, using (2.4), 

(3.21) 

(3.22) 

(3.23) 

Table 1. The Milne density profile nM(x) for ~everal values o f  x as calculated from the 
exact expression (ex), from the N = 2 8  two-stream moment method i Z N ) ,  and from the 
pan (3.170) ofthe  asymptotic small x expansion (as). The last column gives the error A,, 
of the ( 2 N )  results relative to the exact ones. 

0 I 
lo-' 1.003 652 913 
10-2 1.027 52497 

0.2 1.340 348 47 
0.5 1.726 107 69 
I .o 2.300 090 59 

I O 6  1.191 991 339 

1 +3 x 10." 
1.003 041 578 
1.027 3328 
1.191 87549 
1.340 375 06 
1.726 102 21 
2.300 09 I 046 

nM(X) (as) p m  

I 3 x 
1.003 6492 -6.09 X 

1.027 3058 -1.87 X 

1.181 1981 -9.71 x lo-' 
1.307 0911 1.98X LO-J 
1.5849541 -3.17X10-6 
1.893 3826 1.98 x lo-' 
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For U # un we therefore have 

A 
U - un 

gA(u)gA(uo) =-[gA(u)-g*(uo)l (U # un). (3.24) 

If we substitute this result into (3.21) and compare with the results (3.1) and (3.6) for 
the Milne solution f., we obtain 

The coefficient of the 8-function in (3.25) can be obtained from the ‘physical’ argument 
that the particles injected into the system at x = 0 with velocity un are scattered with 
unit rate as they move into the half-space x > 0. A formal derivation is given in the 
appendix. 

The expression (3.25) is the Green function for the BGK equation with absorbing 
boundary at x = 0 for the special case of a source point located at x = 0. It can therefore 
be used to express the albedo solution for an arbitrary input function in terms of the 
Milne solution. The function (3.25) is plotted in figure 2 for x = 0 and x = 1, together 
with the two-stream moment result, for uo = 2. For U < 0 the results obtained with the 
two methods agree to within the accuracy of figure 2; for U > 0 the moment method 
of course yields a rather poor approximation to the &-function. Some numerical results 
are given in table 2. We see that the two-stream method gives highly accurate results 
for moments, except for very high or very low uo. 

X=l 

1.0 I ’ 5 N ,  -.“Est 

0.5 

0.0 

-3 -2 - 1  0 1 2 3  

Figure 2. ( a )  The albedo solution f ( u , x )  for an input velocity u;lS(u-u,) with u,=2 ,  
at x = 0, as calculated using the exact expression (full curve) and the N = 28 two-stream 
moment method (broken curve). For U < O  ths two C U N ~ S  coincide on fhe scale of the 
figure. The delta function at U = 2 is represented by a vertical bar. ( b )  The same quantities 
as in (a) for x =  1. 

To conclude this section, we note that the results for A,= n ( m )  and n(O), given in 
(3.20) and (3.22), confirm the qualitative results obtained in [a] for the density profile 
in albedo problems: for suhthermal injection ( u , < l )  the density is larger than the 
corresponding equilibrium density in the boundary layer, but becomes smaller far from 
the wall (since the probability of a rapid return to the wall is large); for superthermal 
injection (uo> 1) the situation is reversed. For the Klein-Kramers case the situation 
is the same, as shown in figure 4 of [9]. The expression (3.22) allows us to calculate 
n(0) for general g ( u )  without solving the full albedo problem. 
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Table 2. The density at infinity nA(m), the density at the wall n*(O) and the limitf*(-e, 01 
ofthe distribution funclion fur E J O  for the albedo solution with input distribution u; 'S(u - 
uOl for Several values of U,,. as calculated in the two-stream method in N = 28 approximation 
(2NL as extrapolated to N =m using the techniques of [6] (Zm), and by evaluation of 
the exact solution (ex). A dash in the rows (2m) means that no reliable extrapolation could 
be made. 

U 0  nYm) /A(-0, x = 0) 

0.01 (ZN) 1.02475807 
(2m) 1.0259 
(ex) 1.025 960 98 

0.1 .(2N) 1.179740 12 
(2m) 1.1797 
(ex) I.17981905 

1 (2N) 2.24835228 
(zm) 2.248 351 
(ex) 2.248351 18 

4 (2N)  5.35437910 
(2m) 5.354379 
(ex) 5.354378 44 

6 (2N)  7.37621828 
(zm) 7.3762 
(ex) 7.376 307 14 

8 (ZN) 9.42165328 

(ex) 9.388970 56 
(2ml - 

102.6026 
102.59 
102.5961 

11.800332 
11.799 
11.798 191 

2.248 3311 
2.248 35 
2.248 3512 

1.3386312 
1.3386 
1.338 5946 

1.231 2331 
1.229 
1.229 3845 

0.495 1993 

1.1736213 
- 

26.8318 

40.9299 
- 

4.766 96 
4.74 
4.706 79 

0.900 50 
0.90 
0.896 96 

0.536 23 
0.53 
0.534 02 

0.528 57 
0.5 
0.490 45 

-16.1442 
- 
0.468 21 

4. Partially reflecting boundaries 

In the problems discussed in the preceding section all particles arriving at the wall are 
absorbed (or transmitted). This is not the most general case: when some of the particles 
arriving with velocity U' are reflected with velocity U, the boundary condition at x = 0 
takes the general form 

0 

u f ( u , O ) =  du'lu'lu(uIu')f(u',O) for U > 0. (4.1) L 
The coefficients A, and A(A) in (3.1) are now no longer expressible by means of 
quadratures; instead they must be determined by solving an integral equation. We 
shall discuss this integral equation for the special case of partial specular reflection, 
U( U 1 U') = rS( u + U'), for which we have 

f ( u ,  0 )  = rf'(-U, 0 )  for U > 0. (4.2) 

In this case the Milne problem (A; = 1 )  leads to 

&(U)[ Ah(1- r ) -  u ( l +  r ) +  P joy dA A'(A)[g,(u) - r g , ( u ) ] )  = O  for U > 0. 

(4.3) 

By decomposing this equation with respect to the set (2.13), which is complete on the 
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positive half-line, we obtain 

where we used (3.6) and (2.17a), and the regular integral equation 

(4.4) 

(4.5a) 

where we used (3.6) to determine the inhomogeneous term in ( 4 . 5 ~ ) .  The behaviour 
of the kernel K ( t ,  A )  for small and large t follows from (2.18) and (2.19a): 

K ( t ,  A ) -  t / A  (small f) K(t,A)-t- ' ( larget) .  (4.6) 

At f = A  = 0 the kernel is non-analytic, as is clear from 

f 
K ( t , O ) = I + - - - l n  t + O ( t )  (4.7) J211 

which can be derived using the techniques from the appendix; the value K(0,O) 
depends upon the direction from which the origin is approached, e.g. K (  E, E )  = f . 

A practical way to solve the integral equation ( 4 . 5 ~ )  is by expanding A'( t )  in a 
suitable complete set of functions. We obtained good results by the expansion 

m 

A ' ( t ) = A M ( t )  1 b n ( r ) h n ( f )  $" = H . ( t a ) / G  (4.8) 

with H ,  the Hermite polynomials. This ansatz has the advantage that for r = 0 the 
solution takes the simple form b,(O) = SnU. When this expression is substituted into 
(4.5a) and moments with respect to the odd Hermite functions + 2 n + , ( A ) =  
&,(A)+2n+l(A) are taken, we obtain the set of linear equations 

" - 0  

m 

E Ca2.+1,2,+rg,,+,,2,1b,(r)= (1 +r)a2,+,,, n=O,1 ,2 , .  . .  (4.9u) 
,=0 

a., = IomdA +,,(A)$,(*) (4.96) 

g., =IomdA l ~ m d f ~ " ( A ) K ( t , A ) A M ( t ) $ ~ ( t ) .  (4.9c) 

For practical calculations, the infinite set of equations (4.9a) must be truncated by the 
prescription 0 S in, n G N - 1. As is clear from table 3, already the N = 1 approximation 
gives a good approximation to the quantities 

m 

..,", x:. = - - "  A: n ' ( O ) = A & +  f clAA'(?). (4.10) 
J o  

The 'mixed' representation (4.9) gives results that converge better than analogous 
representations obtained by taking moments with respect to even + - ( A )  (or by expand. 
ing in odd $,,(U)); this may be due to the odd character of K ( t ,  A) ,  evident from (4.6). 
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Table 3. The Milne length x h  and the density at the wall n' (0)  far the Milne problem 
with partial reflection, as calculated for various values of the reflection coefficient I by 
extrapolation of the two-stream method of [6] to N =m (2m). by solution of the integral 
equation (4.5) with an approximation of the sum in (4.8) by a single term ( I E ~ )  and by 
twelve terms ( 1 ~ 1 2 ) .  

X h  n" 

0.01 (2m) 1.464407 0973 1.022 503 3903 
(1El)  1,46440704 1.022 585 
(1F.12) 1.464407 10 1.022 527 

0.5 (2m) 4.046 334 151 3.357 958 369 
( I E l )  4.045 93 3.364 
(IE12) 4.046 39 3.359 

0.99 (2m) 249.804661 611 248.84471041 
( I E l )  249.71 248.11 
(,E121 249.82 248.86 

The results obtained by taking N = 12 agree well with the results of the two-stream 
method, as is also clear from table 3. The accuracy reached is much less than that of 
the two-stream method, since the occurrence of multiple numerical integrations compels 
us to calculate K ( t ,  A )  merely in a discrete set of points, between which we must use 
interpolations. 

The structure of the solution near the singularity can be determined by applying 
the techniques described in the appendix to the integral equation (4.3). The result is 

r - 1  
A'(A)=-nn'(0)  Jz;; (4.11) 

from which we find 

f'( - U, 0) = ~ '2) { 1 -zu In u ] + o ( u )  fo ru>O ( 4 . 1 2 ~ )  

f ' (+u ,O)=r f ' ( -u ,O) .  (4.126) 

This result was quoted as (5.4) in [6 ] ,  

5. Concluding remarks 

The results described in this paper show that the singular eigenfunction method for 
solving kinetic boundary layer problems for the BOK equation can be used to obtain 
precise results for the distribution function. For problems that can be treated with the 
two-stream moment method the results of the two methods agree, but the two-stream 
method is much less time consuming and often more accurate; hence in practice the 
eigenfunction method should mainly be used for questions and problems for which 
the two-stream method is less suited, such as the determination of the exact analytical 
nature of singularities, or albedo problems with highly singular input distributions 
when the distribution function at the input side is of interest. 

In the present paper we confined ourselves to the simplest version of the BGK 

equation. However, the methods used can be extended straightforwardly to somewhat 
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more general problems. The restriction to one component of the velocity is not crucial: 
in more general problems a distribution function depending on one space variable 
only can be decomposed according to 

with suitably chosen X I ( U , ,  u~), and we obtain a set of equations like those treated in 
this paper for thef; (with the second term on the right-hand side missing in (2.1) for 
1>0). The equations decouple for the pure Milne and albedo problems, but may be 
coupled for some problems with partial diffuse reflection. Other straightforward gen- 
eralizations involve the full linear BGK equation [4], with a 5~ null space of the collision 
operator, and the Laplace transform of the time-dependent BGK equation. Since in 
most problems involving these generalizations the two-stream moment method can 
also be used, and requires much less analytic and numerical effort, we shall not discuss 
the required modifications of the singular eigenfunction method, which are also treated 
extensively in the literature [3,4, 11, 121, in any more detail. 
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which occur repeatedly in this paper, in the limit PLO. All show a logarithmic depen- 
dence on p, with a coefficient determined by the limiting behaviour off ( t )  for low t. 
As an example, we consider the integral 

m 

= 1; dt  f "  e-P/l ~ p"" lo, dy e-Yy-n-2 for P << E << 1 (A.4) 

for which one finds, using 3.351.4 of [14], 

where r(a, x) is the incomplete r-function, [141, section 8.35, which for small arguments 
has the representation 
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where cE is Euler's constant. We see that the leading singular term has a coefficient 
independent of E. Hence we find 

1d.t P )  = I1(f; 0) + a  ( n  + 1) ! In p +O(p', k >  0) 

A J Kainz and U M Tifulaer 

(-1)"p"" 
i f f ( f )=at" for small f .  

(A.7) 
Similarly, the asymptotic behaviour of 1 2 ( f )  can be extracted from the integral - --- .- *r . . .  

3.3X.3.1U 01  1141 

= Iom df e-*'f*+' ( t + P ) - '  

= pm+' ePwr(a + 2)r(-1 -(I, pp) (A.8) 
which for integer a has a leading logarithmic singularity independent of p. Hence we 
find 

r , ( f ; ~ ) = r ~ ( f ; ~ ) + ~ ( - i ) " ~ ' ~ "  I n p  iff(  f )  = at" (A.9) 
where the singularity is caused by T(-n, x) for integer n. By differentiating I, ,  with 
respect to a and subsequently choosing a to be the integer we obtain 

1 2 ( f ; ~ ) = r 2 ( f ; 0 0 ) + ( a / 2 ) ( - i ) " + ' ~ "  In2p iff(r) =at" In f .  (A.lO) 

By using the reiation 

a 
12(f; P )  = ap 1Af; P )  

we arrive at the relations 

(A. l l )  

and 

forf(t)=at" ln t .  (A.13) 

The correction terms specified in (A.S)-(A.13) are always the largest singular terms; 
for n z 0 there may be terms analytic in p that are of lower order in p (p ,  p2. etc). 

The estimate (A.12) is used in evaluating (2.10b) for Q(A), with the result (2.23a), 
and A'(A) in (3.6). The estimates (A.7) and (A.9) are used for analysing the singularity 
infM(u, x)  near U =x=O; their main use is in showing that the terms neglected in the 
transition from (3.10) to (3.11), or from (3.12) to (3.13), are of order U In U, and hence 
negligible relative to the orders retained. In some classes, the integrals contain more 
than one of the factors considered in (A.l)-(A.3); it is clear, however, that the correction 
terms can simply be added for small p, provided the exponent n in (A.7)-(A.13) is 
non-negative. The singularity for integrals of type 

I A . ~ P ) = P  Jomdtf(-t)(t-p)-l  (A.14) 

is similar to that of I,, at least for f ( f )  that are differentiable at f =0,  since 

(A.15) 
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is analytic in p for such f ( f ) .  Estimates of type (A.9) enter, for example, into the 
estimate (4.7). 

The second problem considered in this appendix is the treatment of the distribution 
(3.23). when appearing inside of integrals such as that in (3.21). Since the regular part 
of f ( u ,  x) was already determined in the text leading up to (3.25), we merely need to 
determine the coefficient of S(A-u)8(A-u,), which leads to the S ( u - u o )  term in 
(3.25). To that purpose we use the representations 

1 P-=lim [ +inS(A-u) 
A - U  40 A-u+i& 

-irS(A-uo) . 1 
(A.15a) 

(A.15 6 )  

Substitution into (3.23) and (3.21) gives a contribution of type S(u -U,,) resulting from 
S(A - u)S(A - uo) in the integrand, with a coefficient equal to 

(A.16) 

where we used (2 .10~) .  This confirms the conjecture in (3.25). The remaining terms - eive rise to regular contributions; for integral expressions involving the distribution 
(3.23) we thus find 

(A.17) 

for sufficiently smoothf(A). For the special casef(A) = [C(A)Q(A)]-' we recover from 
(A.17) the completeness relation (2.12). The agreement shown in figure 2 between the 
expression calculated by (3.25) and the result obtained by the two-stream method 
serves as an additional check on the derivation sketched above. 
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